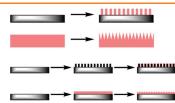


On these pages, we feature a selection of the excellent work that has recently been published in our sister journals. If you are reading these pages on a computer, click on any of the items to read the full article. Otherwise please see the DOIs for easy online access through Wiley InterScience.



Hydrophobic Effect

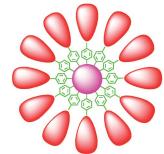
C. R. Crick, I. P. Parkin*

Preparation and Characterisation of Super-Hydrophobic Surfaces

Simply super! The interest in highly water-repellent surfaces has grown in recent years due to the desire for self-cleaning surfaces. This review identifies four methods for the construction of superhydrophobic surfaces (see figure) along with a summation of the key properties of the surface that result in hydrophobicity. A summary of the different routes to super-hydrophobicity is also given.

Chem. Eur. J.

DOI: 10.1002/chem.200903335



Dendrimers

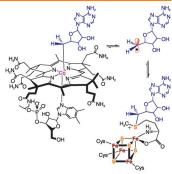
V. K. R. Kumar, K. R. Gopidas*

Synthesis and Characterization of Gold-Nanoparticle-Cored Dendrimers Stabilized by Metal-Carbon Bonds

A heart of gold: Reduction of $HAuCl_4$, phase-transferred into toluene in the presence of diazonium salt capped Fréchet-type dendrons (G_1 – G_4), results in the formation of gold-nanoparticle-cored dendrimers (NCDs; see graphic) that have carbon–gold covalent bonds, which have been characterized by TEM, thermogravimetric analysis (TGA), and IR, UV, and NMR spectroscopy.

Chem. Asian J.

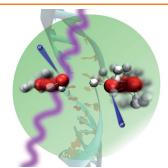
DOI: 10.1002/asia.200900388



Enzymes

E. N. G. Marsh,* D. P. Patterson, L. Li*

Adenosyl Radical: Reagent and Catalyst in Enzyme Reactions

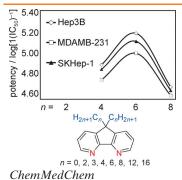

Primordial molecules: An adenosyl radical is generated as a reactive intermediate by two families of enzymes that use either adenosylcobalamin or *S*-adenosylmethionine as cofactors. We review and contrast the wide range of unusual reactions catalyzed by these enzyme families and discuss the likelihood that the highly oxygen-sensitive radical *S*-adenosylmethionine enzymes are also active in aerobic organisms.

ChemBioChem

DOI: 10.1002/cbic.200900777

... ON OUR SISTER JOURNALS

ChemPhysChem DOI: **10.1002/cphc.201000034**


Water Radicals

O. Vendrell,* S. D. Stoychev, L. S. Cederbaum*

Generation of Highly Damaging H₂O⁺ Radicals by Inner Valence Shell Ionization of Water

Bye bye friend: Water molecules surround all biological structures. Inner-valence ionization of water, followed by intermolecular Coulombic decay, generates two water radical cations in close proximity. The two fragments strongly repel each other and quickly separate, gaining a large amount of translational and rotational energy (see graphic).

DOI: **10.1002/cmdc.201000034**

Antitumor Agents

Q. Wang, M. C.-W. Yuen, G.-L. Lu, C.-L. Ho, G.-J. Zhou, O.-M. Keung, K.-H. Lam, R. Gambari, X.-M. Tao, R. S.-M. Wong, S.-W. Tong, K.-W. Chan, F.-Y. Lau, F. Cheung, G. Y.-M. Cheng,* C.-H. Chui,* W.-Y. Wong*

Synthesis of 9,9-Dialkyl-4,5-diazafluorene Derivatives and Their Structure–Activity Relationships Toward Human Carcinoma Cell Lines

A homologous series of 9,9-dialkyl-4,5-diazafluorenes were prepared. Their spectroscopic properties and biological activities toward three human cancer cell lines, including Hep3B hepatocellular carcinoma, MDAMB-231 breast carcinoma, and SKHep1 hepatoma, were investigated to understand their structure–activity relationships.

45.0 nm 0.0 nm 1000 nm 750 nm 250 nm 1000 nm

*ChemSusChem*DOI: **10.1002/cssc.200900255**

Photoelectron Generation

M. Vittadello,* M. Y. Gorbunov, D. T. Mastrogiovanni, L. S. Wielunski, E. L. Garfunkel, F. Guerrero, D. Kirilovsky, M. Sugiura, A. W. Rutherford, A. Safari, P. G. Falkowski

Photoelectron Generation by Photosystem II Core Complexes Tethered to Gold Surfaces

For Your Electrons Only: By using a nondestructive, ultrasensitive, fluorescence kinetic technique, the photochemical energy conversion efficiency and electron transfer kinetics on the acceptor side of histidine-tagged photosystem II core complexes tethered to gold surfaces are measured in situ.

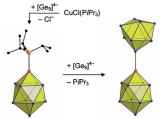
DOI: **10.1002/cctc.200900274**

Heterogenous Catalysis

R. Al Otaibi, W. Weng, J. K. Bartley, N. F. Dummer, C. J. Kiely, G. J. Hutchings*

Vanadium Phosphate Oxide Seeds and Their Influence on the Formation of Vanadium Phosphate Catalyst Precursors

Seeds of change: Vanadium phosphate oxides (VPO) were prepared with the use of hemihydrate 'seeds' and evaluated for selective butane oxidation. This seeding concept is shown to have a dramatic effect on the morphology of the final activated catalyst. In the case of the reaction of $VOPO_4$ ·2 H_2O in 3-octanol with a $VOHPO_4$ ·0.5 H_2O seed, a mixed phase was formed which has a specific activity almost 2.5 times greater than the standard VPO preparation.



Intermetalloid Clusters

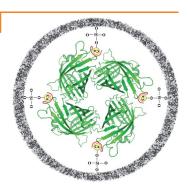
S. Scharfe, T. F. Fässler*

Varying Bonding Modes of the Zintl Ion $[Ge_9]^{4-}$ in Cu^I Complexes: Syntheses and Structures of $[Cu(\eta^4-Ge_9)(PR_3)]^{3-}$ (R = iPr, Cy) and $[Cu(\eta^4-Ge_9)(\eta^1-Ge_9)]^{7-}$

The Cu-capped Ge_9 clusters $\left[Cu(\eta^4\text{-}Ge_9)R\right]^{3-}$ $(R=PCy_3,PiPr_3)$ and $\left[Cu(\eta^4\text{-}Ge_9)(\eta^1\text{-}Ge_9)\right]^{7-}$ show that homoatomic Zintl anions can act as multifunctional ligands. The clusters serve as a six-electron donor with η^4 coordination and can also act as a two-electron σ donor. The stepwise exchange of ligands at the Cu^I atom shows how metal clusters can form larger intermetalloid clusters (Cu:red,Ge:blue,P:orange).

 $\begin{array}{ll} [\text{Cu}(\eta^4\text{-Ge}_9)(PiPr_3)]^{3-} & [\text{Cu}(\eta^4\text{-Ge}_9)(\eta^1\text{-Ge}_9)]^{3-} \\ Eur.\ J.\ Inorg.\ Chem. \end{array}$

DOI: 10.1002/ejic.200901038



Protein Encapsulation

A. Cao,* Z. Ye, Z. Cai, E. Dong, X. Yang, G. Liu, X. Deng, Y. Wang, S.-T. Yang, H. Wang,* M. Wu, Y. Liu

A Facile Method To Encapsulate Proteins in Silica Nanoparticles: Encapsulated Green Fluorescent Protein as a Robust Fluorescence Probe

Si'l vous plait? A facile and general method has been developed to encapsulate polyhistidine-tagged proteins in silica nanoparticles (NPs; gray, see picture) using calcium ions (yellow). The enhanced green fluorescence protein (EGFP) encapsulated in the silica NPs shows a substantial increase in fluorescence intensity and stability against denaturants, protease, and heat.

Angew. Chem. Int. Ed. DOI: 10.1002/anie.201906883

